Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594492

RESUMO

The incidence of Candida species resistant to traditional antifungal drugs is increasing globally. This issue significantly impacts patients' lives and increases healthcare expenses, confirming the need to develop novel therapeutic strategies. Recently, a thermostable trypsin inhibitor named ShTI (11.558 kDa), which has antibacterial effects on Staphylococcus aureus, was isolated from Salvia hispanica L. (chia) seeds. This study aimed to assess the antifungal effect of ShTI against Candida species and its synergism with fluconazole and to evaluate its mode of action. Preliminary toxicological studies on mouse fibroblasts were also performed. ShTI exhibited antifungal effects against C. parapsilosis (ATCC® 22,019), C. krusei (ATCC® 6258), and six clinical fluconazole-resistant strains of C. albicans (2), C. parapsilosis (2), and C. tropicalis (2). The minimum inhibitory concentration (MIC) values were 4.1 µM (inhibiting 50% of the isolates) and 8.2 µM (inhibiting 100% of the isolates). Additionally, when combined with fluconazole, ShTI had a synergistic effect on C. albicans, altering the morphological structure of the yeast. The mode of action of ShTI against C. krusei (ATCC® 6258) and C. albicans involves cell membrane permeabilization, the overproduction of reactive oxygen species, the formation of pseudohyphae, pore formation, and consequently, cell death. In addition, ShTI (8.65 and 17.3 µM) had noncytotoxic and nongenotoxic effects on L929 mouse fibroblasts. These findings suggest that ShTI could be a promising antimicrobial candidate, but further research is necessary to advance its application as a novel antifungal agent.

2.
J Med Microbiol ; 73(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385528

RESUMO

Introduction. Candida albicans and Staphylococcus aureus are recognized for their development of resistance and biofilm formation. New therapeutic alternatives are necessary in this context.Hypothesis. Etomidate shows potential application in catheters against mixed biofilms of fluconazole-resistant C. albicans and methicillin-resistant S. aureus (MRSA).Aim. The present study aimed to evaluate the activity of etomidate against mixed biofilms of fluconazole-resistant C. albicans and MRSA.Methodology. The action of etomidate against mature biofilms was verified through the evaluation of biomass and cell viability, and its ability to prevent biofilm formation in peripheral venous catheters was determined based on counts of colony forming units (c.f.u.) and confirmed by morphological analysis through scanning electron microscopy (SEM).Results. Etomidate generated a reduction (P<0.05) in biomass and cell viability starting from a concentration of 250 µg ml-1. In addition, it showed significant ability to prevent the formation of mixed biofilms in a peripheral venous catheter, as shown by a reduction in c.f.u. SEM revealed that treatment with etomidate caused substantial damage to the fungal cells.Conclusion. The results showed the potential of etomidate against polymicrobial biofilms of fluconazole-resistant C. albicans and MRSA.


Assuntos
Etomidato , Staphylococcus aureus Resistente à Meticilina , Fluconazol/farmacologia , Candida albicans , Antifúngicos/farmacologia , Etomidato/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
3.
J Med Microbiol ; 72(9)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37707372

RESUMO

Introduction. Antibiotic resistance is a major threat to public health, particularly with methicillin-resistant Staphylococcus aureus (MRSA) being a leading cause of antimicrobial resistance. To combat this problem, drug repurposing offers a promising solution for the discovery of new antibacterial agents.Hypothesis. Menadione exhibits antibacterial activity against methicillin-sensitive and methicillin-resistant S. aureus strains, both alone and in combination with oxacillin. Its primary mechanism of action involves inducing oxidative stress.Methodology. Sensitivity assays were performed using broth microdilution. The interaction between menadione, oxacillin, and antioxidants was assessed using checkerboard technique. Mechanism of action was evaluated using flow cytometry, fluorescence microscopy, and in silico analysis.Aim. The aim of this study was to evaluate the in vitro antibacterial potential of menadione against planktonic and biofilm forms of methicillin-sensitive and resistant S. aureus strains. It also examined its role as a modulator of oxacillin activity and investigated the mechanism of action involved in its activity.Results. Menadione showed antibacterial activity against planktonic cells at concentrations ranging from 2 to 32 µg ml-1, with bacteriostatic action. When combined with oxacillin, it exhibited an additive and synergistic effect against the tested strains. Menadione also demonstrated antibiofilm activity at subinhibitory concentrations and effectively combated biofilms with reduced sensitivity to oxacillin alone. Its mechanism of action involves the production of reactive oxygen species (ROS) and DNA damage. It also showed interactions with important targets, such as DNA gyrase and dehydroesqualene synthase. The presence of ascorbic acid reversed its effects.Conclusion. Menadione exhibited antibacterial and antibiofilm activity against MRSA strains, suggesting its potential as an adjunct in the treatment of S. aureus infections. The main mechanism of action involves the production of ROS, which subsequently leads to DNA damage. Additionally, the activity of menadione can be complemented by its interaction with important virulence targets.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Oxacilina , Oxacilina/farmacologia , Vitamina K 3/farmacologia , Meticilina , Staphylococcus aureus , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Biofilmes
4.
Microb Pathog ; 155: 104892, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33894289

RESUMO

Staphylococcus aureus is a commensal bacterium and opportunistic human pathogen that can cause a wide variety of clinical infections. It is recognized for its ability to acquire antimicrobial resistance, so methicillin-resistant Staphylococcus aureus (MRSA) infections are a global healthcare challenge. Therefore, the development of new therapeutic options and alternative therapies for treatment is necessary. Curcumin, a polyphenolic substance found in the rhizome of turmeric longa L, has been shown to have several therapeutic properties, including antimicrobial activity. The objective of the study was to evaluate the in vitro antibacterial activity of curcumin alone and associated with oxacillin against MRSA strains, to analyze the mechanism of cell death involved in the isolated action of curcumin by means of flow cytometry and molecular docking, and to verify its superbiofilm action. Curcumin showed antibacterial activity in the range of 125-500 µg/mL against the tested strains, since it caused an increase in membrane permeability and DNA fragmentation, as revealed by flow cytometry analysis. Moreover, it was possible to observe interactions of curcumin with wild-type S. aureus DHFR, S. aureus gyrase and S. aureus gyrase complex with DNA, DNA (5'-D(*CP*GP*AP*TP*GP*CP*G)-3') and Acyl-PBP2a from MRSA by molecular docking. Curcumin also had a synergistic and additive effect when associated with oxacillin, and significantly reduced the cell viability of the analyzed biofilms. Thus, curcumin is a possible candidate for pharmaceutical formulation development for the treatment of MRSA infections.


Assuntos
Curcumina , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Biofilmes , Curcumina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Plâncton , Staphylococcus aureus
5.
J Med Microbiol ; 69(10): 1221-1227, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32894212

RESUMO

This study evaluated the effect of etomidate against biofilms of Candida spp. and analysed through molecular docking the interaction of this drug with ALS3, an important protein for fungal adhesion. Three fluconazole-resistant fungi were used: Candida albicans, Candida parapsilosis and Candida tropicalis. Growing biofilms were exposed to etomidate at 31.25-500 µg ml-1. Then, an ALS3 adhesive protein from C. albicans was analysed through a molecular mapping technique, composed of a sequence of algorithms to perform molecular mapping simulation based on classic force field theory. Etomidate showed antifungal activity against growing biofilms of resistant C. albicans, C. parapsilosis and C. tropicalis at all concentrations used in the study. The etomidate coupling analysis revealed three interactions with the residues of interest compared to hepta-threonine, which remained at the ALS3 site. In addition, etomidate decreased the expression of mannoproteins on the surface of C. albicans. These results revealed that etomidate inhibited the growth of biofilms.


Assuntos
Candida/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Etomidato/farmacologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Etomidato/metabolismo , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular/métodos
6.
Microb Pathog ; 127: 335-340, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30529514

RESUMO

Emergence of methicilin resistant Staphylococcus aureus (MRSA) strains is a major cause of infirmity worldwide and has limited our therapeutic options against these pathogens. In this regard, the search for candidates with an antimicrobial activity, with a greater efficacy and a lower toxicity, is necessary. As a result, there is greater need to search for resistance modifying agents which, in combination with existing drugs, will restore the efficacy of these drugs. The antibacterial effect of fluoxetine was determined by a broth microdilution method (the M07-A9 method of the Clinical and Laboratory Standard Institute) and flow cytometry techniques in which the probable mechanism of action of the compound was also assessed. The isolates used in the study belonged to the Laboratory of Bioprospecting of Antimicrobial Molecules (LABIMAN) of the Federal University of Ceará. After 24 h, Methicillin-resistant Sthaphylococcus aureus (MRSA) strains showed fluoxetine MICs equal to 64 µg/mL and 128 µg/mL, respectively. Cytometric analysis showed that treatment with fluoxetine caused alterations to the integrity of the plasma membranes and DNA damage, which led to cell death, probably by apoptosis.


Assuntos
Antibacterianos/farmacologia , Fluoxetina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Dano ao DNA , Citometria de Fluxo , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...